Toxicokinetics for Pharmaceuticals and Biologics

Geoff Goodfellow, PhD Pharmaceutical & Healthcare Group CANTOX HEALTH SCIENCES INTERNATIONAL

OBJECTIVES

- To provide some points to consider for regulatory affairs professionals regarding the use of toxicokinetic (TK) data, including those used for the overall determination of bioequivalence/biosimilarity
- To cover the "why" of toxicokinetics, not just the "how"

Biotechnology-Derived Products (Biologics)

- Recombinant proteins
- Monoclonal antibodies
- Vaccines
- Gene transfer products
- Somatic cell therapy products
- Synthetic peptides
- Oligonucleotide-based technologies
- Biologics (blood and blood products, toxins, antisera, allergen extracts, etc.)

What is Toxicokinetics?

- The use of pharmacokinetics to determine the relationship between the systemic exposure of a compound in animals and the toxicity profile
- Pharmacokinetics: "how a substance gets into the body and what happens to it in the body"
 - <u>Absorption</u>
 - Distribution
 - Biotransformation (Metabolism)
 - Excretion

What is Toxicokinetics? Cont.

- Severity of toxicity disposition and biological activity
- Disposition:
 - Duration and substrate concentration at entry point
 - Rate/amount of drug absorbed
 - Body distribution and concentration at specific body sites
 - Biotransformation nature of metabolites
 - Ability of molecule to interact with specific cell components
 - Amount/duration of storage of molecule in body tissues
 - Rate/site of excretion

Why Toxicokinetics?

 Difficult to extrapolate the effects observed on a mg/kg (or mg/m²) basis in the preclinical species to humans, without additional information on the ADME profile of the drug

Objectives of Toxicokinetic Endpoints in Nonclinical Studies

- Describe systemic exposure achieved in toxicity studies (*i.e.*, determine the TK profile)
- Relate exposure to findings observed in preclinical studies to evaluate toxicity
- Assist in determining whether findings in animals are relevant to humans prior to initiating clinical trials
- Provide justification for species, sex, dosing frequency, and study designs
- Good scientific approach

Basic Principles of Toxicokinetics

- Use of mathematical models to quantitate time course of drug absorption and disposition in animals
- PK studies low pharmacological doses, linear kinetic process
- TK studies high doses, susceptible to drug solubility problems, often nonlinear
- A model to estimate concentration and general parameters
- Data serve to bridge across species, *in vitro* vs. *in vivo*, preclinical to clinical, and link between physiology and genetics and disposition

What Do Toxicokinetic Data Tell Us?

Early Development (Discovery to Phase I/II)

- "understanding" of the drug, metabolic fate, etc.
- Starting dose in clinic primarily based on mg/kg basis (*i.e.,* NOAELs and appropriate safety factor)
- Dose proportionality
- Gender profile
- Correlate toxicity and systemic effects

Later Development (Phase II/III to Registration)

- Assume that there is a significant amount of clinical data
- Comparisons of toxicity profiles during this stage of clinical development are driven by an AUC-based rationale
- Primarily used for labeling purposes, e.g., carcinogenicity studies, reproductive/toxicity studies

When/Why Should You Carry Out Toxicokinetic Evaluations?

- Assist in interpretation of toxicity studies
- Aid in dose selection for next toxicity studies
- Understand exposure-response assessments
- Facilitate cross-species comparisons
- Determine whether additional toxicity studies are required
- Repeated-dose kinetic data
- Included in the design of distribution studies

How Should Toxicokinetic Evaluations be Designed?

- Adhere to principles of GLP (if part of a GLP study)
- Assess exposure to parent and metabolites (when appropriate) in systemic compartments
- Use justified sampling time points (*i.e.*, sufficient numbers (~6 to 8) to estimate exposure)
- Use appropriate numbers of animals and dose groups
- Males and females (if both used in toxicity study)
- Not concerned with achieving high statistical precision
- Use specific, accurate, and precise bioanalytical methods
- Methods are validated and conform to GLP

Additional Study Design Considerations

- The extent of TK data required is often dependent on the toxicity profile
- If well-defined target organ toxicity, plasma TK used to obtain information to "interpret toxicity findings and determine the margin of safety"
- If poor correlation between systemic exposure and toxicity, consider target organ TK studies
- Other points to consider
 - Route, age of animals, dosing frequency, satellite vs. main toxicity study animals
- Goal: collect TK data in toxicity study using route and schedule ~ human use

Measuring Toxicokinetics: Factors to Consider

- Matrix: plasma (common) vs. whole-blood or serum (less common)
- <10% of circulating blood volume can be taken for analysis
- Exposure based on active entity (not salt)
- Racemate vs. enantiomer analyte
- Non-linear dose kinetics
- Parent (always) vs. metabolite (rarely) analysis
- Pro-drug: metabolite is the active entity
- Drug metabolized to pharmacological or toxicological relevant metabolites
- Extensive metabolism, systemic exposure based on major metabolites
- Human metabolite not identified in animal studies

How are Drug Concentration Data Obtained and What Parameters are Determined?

- Plasma/Whole Blood/Serum Levels Can Be Measured By:
 - HPLC (UV, fluorescence)
 - HPLC-MS, HPLC-MS-MS
 - ELISA
 - Capillary electrophoresis (rarely, for proteins)
- Parameters:
 - C_{max}, AUC, T_{max}, $t_{1/2}$

How Should the Data be Reported?

- A stand-alone report that is included as an appendix in the toxicity study report
- A comprehensive description of the data generated

Examples of How Toxicokinetic Profiles are Used to Assess and Interpret Toxicity

- Dose-dependent exposure
- Neutralizing antibodies
- Dosing regimen effects (daily vs. cumulative actions of drug)
- Metabolites
- Pro-drug

Preclinical Studies that Typically Include Toxicokinetics

- General toxicity (acute, repeated-dose)
- Carcinogenicity
- In vivo genotoxicity assay
- Tissue distribution studies
- Development and reproductive toxicity

Acute Toxicity Studies

- In rodents, blood samples may be collected and stored for possible TK analysis; however, it is more common for exposure data to be obtained in pilot PK studies (which can also be used to test different formulations, dosing regimens, *etc.*)
- In nonrodent MTD studies, it is more likely that TK will be a component of the study design (*e.g.*, to confirm exposure is adequate if an emetic effect observed)
- Justify selection of high-dose for subsequent repeated-dose toxicity studies (*i.e.,* if plateau in exposure is observed)

Repeated-Dose Toxicity Studies

- Assess whether dose or duration (Day 1 vs. last day of dosing) have any effects on systemic exposure
- Determine whether there is an induction/inhibition of systemic clearance
- Evaluate whether systemic exposure data support toxicity profile (if not, may need to obtain target organ exposure data)

Toxicokinetic-Based Approaches to Selecting High-Dose for Rodent Carcinogenicity Study

- Assumption for use of TK-based approaches:
 - compound is non-genotoxic (based on standard battery) and displays a low degree of toxicity
- MTD often used to determine the high-dose for a carcinogenicity study, based on the results of a 3-month range-finding toxicity study
- It is recognized that there is a threshold for non-genotoxic carcinogens

Toxicokinetic-Based Approaches to Selecting High-Dose for Rodent Carcinogenicity Study – Cont.

- Option #1 : 25-fold multiple of human systemic exposure
 - Metabolism (qualitative): rodents ~ humans
 - Adjust for plasma protein binding (especially if >80%, significantly greater in animals than in humans)
 - Systemic exposure based on parent drug; parent + metabolite; or solely metabolites
 - Human systemic exposure used for calculation is referred to as the <u>Maximum Recommend Human</u> <u>Dose (MRHD)</u>
 - High dose = 25 X exposure (AUC) at the MRHD

Toxicokinetic-Based Approaches to Selecting High-Dose for Rodent Carcinogenicity Study – Cont.

- Option #2 : Saturation of Absorption
 - Systemic exposure reaches a plateau for compounds that are poorly absorbed or have a receptor-mediated mechanism (note: as absorption occurs by passive diffusion for most drugs, it is not a saturable process)
 - Investigated by testing a wide range of doses (up to 1,500 mg/kg or MFD)
 - Plateau if ≥ 20% increase in systemic exposure at next highest dose
 - In reality, should look at several different dose levels and may even need statistics to interpret the plateau
 - High dose: lowest dose which displays maximum systemic exposure
 - Important to demonstrate that limitations in systemic exposure not due to increased metabolism (*i.e.*, need to look for possible metabolites)

Comments Regarding Toxicokinetic Evaluations in Carcinogenicity Studies

- Ensure steady state equilibrium of ADME is consistent with TK profile in 3-month range-finding studies (typically achieved after about 6 half-lives)
- Do not need to calculate/determine AUC
- Typically 1-3 time points is adequate, which include T_{max} (peak) and T_{min} (trough)
- Monitor for first 6 months (*e.g.,* rats: 3 month and 6 months; mice: 1 month, 6 months)

In vivo Genotoxicity Studies

- If result of *in vivo* assay is negative, need to demonstrate that it is not due to a lack of systemic exposure or exposure in target tissue
 - Plasma levels
 - Bone marrow levels
 - Autoradiography of bone marrow
 - "Effects" on bone marrow (toxicity)

Tissue Distribution Studies

- Tissue distribution data are valuable for interpreting target organ toxicity
- How would these data support target organ toxicity?
 - Target tissue half-life > dosing interval by 2-fold
 - Half-life of parent drug/metabolite is significantly greater following repeated-dose vs. single dose
 - Unanticipated target organ toxicity (based on histopathology in short-term studies)
- Duration:
 - Only long enough to monitor the drug at steady state in target organs/tissues (~1-3 weeks)

Development and Reproductive Toxicity Studies

- Data from non-pregnant animals is useful to set
 dose levels
- Dependent on the extent of observed toxicity in range-finding studies (if low toxicity, may be justified to include exposure data)
- An expectation, but no requirement per se, to obtain TK data, with most companies getting this information at the start and end of gestation in teratology studies
- May need to use another species if placental transfer is not adequate

Metabolites

- Comments applicable to pharmaceuticals <u>not</u> biologics
- Quantitative differences are common between animals and humans
- Assumption that preclinical species used in toxicity studies have a <u>qualitatively</u> similar metabolic profile as humans (*e.g.*, based on results from liver slices, hepatocytes, hepatic microsomes)
- Qualitative differences are uncommon, but some reactions are limited to primates
- If you are not able to demonstrate exposure to human-specific metabolites, separate safety data may be required (*e.g.*, limited *in vitro* genotoxicity, subchronic toxicity studies in single species (rodent) with duration dependent on proposed clinical use (2 weeks-13 weeks), teratology in single species)

Quantitation of Metabolites

- Pro-drug converted to bio-active metabolite
- Highly potent metabolite
- Metabolites constitute predominant circulating drug related moieties
- Note: A "major metabolite" accounts for a significant proportion of the AUC of total drugrelated entities (*i.e.*, >25% of total systemic exposure)
 - If no impact on safety, then this metabolite is not considered important *per se*

Active Metabolites

Metabolic Activity:

- Same as parent
- Different than parent
- A mixture of both processes

Is an active metabolite important?

- Determined based on:
 - relevant systemic exposure of parent drug and metabolite (*e.g.*, AUCs)
 - Relevant potencies of parent and metabolite against desired pharmacological target and/or toxicological target.

Active Metabolites – Cont.

- Parent is a pro-drug
- Metabolite is next-generation drug
- Potency
- Selectivity
- Bioavailability
- Safety profile
- Half-life
- Distribution between plasma and tissues

Case Studies

- Toxicity studies to support a novel drug combination
- Proposed label change based on new reproductive toxicity data
- Modification of clinical development program
- Selection of doses for carcinogenicity study

- Combination of a marketed drug + Drug X
- FDA suggested that the Sponsor conduct a 1 mo. rat study
- Mortality (>90%) at 2 weeks at dose levels <u>not</u> associated with mortality for single use of each agent
- <u>Why?</u>
- Information used for establishing clinical monitoring procedures and adjusting starting doses in clinical trials

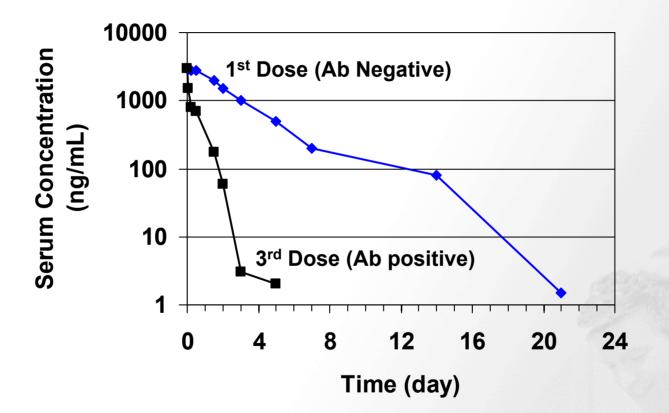
- Clinical routes of administration:
 - oral and IV (IV dose is 15-fold greater than oral on mg/kg)
- Sponsor generated new reproductive toxicity data (oral teratology studies in rats and rabbits) and requested that FDA concur with the proposed labeling change
- Findings: no toxicity in F₀ generation
- <u>Why?</u>
- Exposure data:
 - high oral bioavailability in humans
 - very low oral bioavailability in rats
 - exposure at highest oral dose level tested in rats = human clinical exposure following oral administration, but 50-fold lower than human systemic exposure following IV administration
- Overall, data did not support a change in labeling

- Drug Y being developed primarily for use in women
- No gender-differences in toxicity profile or total systemic exposure
- Rat metabolism study
 - Males: parent drug < 10% total exposure
 - Females: parent drug > 50% total exposure
 - Similar results by IV route
- Male dogs also display rapid metabolism of parent drug (female dogs not tested)
- Phase I studies in healthy male volunteers and extensive PK studies in males carried out
- Kinetics in females first investigated in Phase II and ~6-fold greater systemic exposure than males
- Clinical development program would have proceeded much differently if additional preclinical studies carried out up front

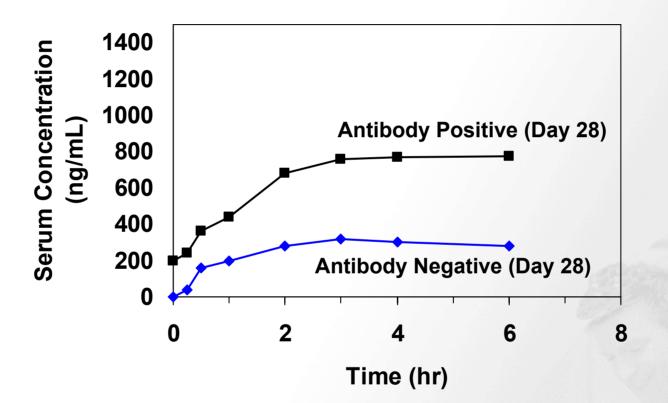
- 13-week dietary admix dose range-finding study in rats (male, female) submitted in support of proposed dose levels for carcinogenicity study
- High-dose based on MTD, but FDA aware of a separate oral gavage study in same strain of rats that displayed dose limiting toxicities at dose levels 3-fold greater than the highest level used in the dietary administration study
- TK data for dietary admix and gavage administration yielded equivalent toxicity at ~ equivalent systemic exposure levels (thus, if no TK data were available, highdose would have had to rely on gavage data)
- FDA concurred with Sponsor's proposed dose levels

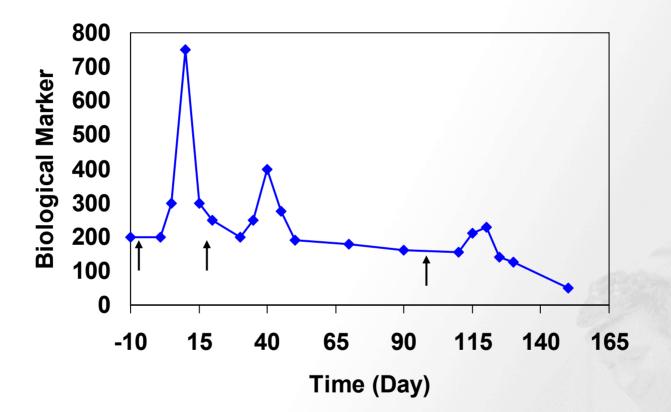
Toxicokinetics for Biologics

- General principles discussed to this point apply for both pharmaceuticals and biologics (biopharmaceuticals)
- Single- and repeated-dose toxicokinetics and tissue distribution studies are useful, mass balance studies are not
- Species differences can have a significant impact on dose-response relationships, data extrapolation, and risk assessment
- Use clinically relevant routes and regimens
- Measure systemic exposure


Immunogenicity

- Assumed that most biologics for humans will be immunogenic in animals
- Antibodies generated must be measured and characterized to determine the potential effects on pharmacokinetics/toxicokinetics
- Clinically relevant anti-drug antibodies
 - Clearing antibodies
 - Sustaining antibodies
 - Neutralizing antibodies
 - Antibodies that cross-react with endogenous proteins


Clearing Antibodies


Sustaining Antibodies

Neutralizing Antibodies

Conclusion

 Toxicokinetic data are an important component of the design and interpretation of toxicity studies for pharmaceuticals and biologics

THANK YOU!

ggoodfellow@cantox.com

905-542-2900

