# Basic Pharmacokinetics for Pharmaceutical Products



#### John Cobby PhD

Founder, GALENOS

20 November 2006



### Quotation

A fool often fails because he thinks what is difficult is easy and a wise man because he thinks what is easy is difficult

John Churlton Collins (1848-1908)

# **Objectives**

This presentation presents a concise understanding of basic concepts of pharmacokinetics, bioavailability, and bioequivalence for individuals who summarize or review information

The presentation does not require comprehension of derivation of mathematical equations

### **Basic Concepts**

This presentation provides sufficient background to enable decisions on:

 whether use of mathematical equations and compartmental analyses provides anything of value

pertinent questions of pharmacokinetic reports



# **Basic Pharmacokinetics for Pharmaceutical Products**

#### Definitions and Brief Discussion of Pharmacokinetic Terms





### **Pharmacokinetics**

#### Definition

"The study of the kinetics of the absorption, distribution, metabolism, and excretion of drugs in man and animals"

Editors, J Pharmacokin Biopharm 1973; 1:3



## **Pharmacodynamics**

#### Definition

"The study of the kinetics of the pharmacologic, therapeutic, or toxic responses in man and animals"

Editors, J Pharmacokin Biopharm 1973; 1:3

# **Drug Entering Body**



# **Drug Entering Body**

- Drug Released from Dosage Form Example: from tablet (slow-release)
- Drug Absorbed
  - **Example: from stomach and small intestine**
  - Drug Measured in Systemic Circulation Example: measured from samples of blood or plasma collected at various times







# Drug Exiting Body

#### Drug Excreted

**Example: generally through kidneys** 

#### **Drug Measured in Urine**

Example: from all urine collected over a time period

#### Metabolites

Example: often by liver, then to kidneys rarely measured because inactive





### **Active Drug Substance**

Drug at Receptor Sites

Example: anesthetic in nerves not measurable directly pharmacodynamic response

Drug at Inactive Tissues
 Metabolites at Receptor Sites
 Metabolites at Inactive Tissues
 Example: rarely measured because of inactivity



## Active Drug Substance

- Note that the drug measured in the systemic circulation is always mathematically in balance with the drug at the receptor sites
  - When one increases (decreases), the other increases (decreases)



# **Terms Used for Drug**

- R
  Release (from dosage form)
- A Absorption
- **D** Distribution
- M Metabolism
- E Excretion

#### **Distribution + Elimination = Disposition**



Pharmacokinetic Definition Restated

After drugs are released for absorption, the study of the kinetics of the absorption and disposition of drugs in man and animals

#### or

Kinetics of drugs entering and exiting the body

### **Linear Pharmacokinetics**

For most drugs within the therapeutic range, the pharmacokinetic properties are independent of:

amount of dose administered number of doses administered

This is linear pharmacokinetics



### Basic Pharmacokinetics for Pharmaceutical Products

#### Brief Discussion of Mathematical Equations





#### **Compartmental Analyses One Compartment Disposition Model** (Distribution) **Excretion** Release Dosage **Drug** in Form Urine V **Absorption Metabolisn**

C = concentration of drug (in plasma, for example) V = apparent volume of distribution of compartment



### **Compartmental Analyses**





### First-Order Processes

# Most processes resulting in movement of drug from one area to another are:

#### shown to be

#### or approximated at low concentrations by

first-order processes and equations



### **First-Order Equations**

The rate of change is proportional to the amount to be changed at that time

Mathematically:

 $\frac{dX}{dt} = kX$ 

where k is the proportionality constant (units of reciprocal time)

# **First-Order Equations**

The rate of loss of drug is proportional to the amount of drug still to be lost at that time

Mathematically:

$$-\frac{\mathrm{dX}}{\mathrm{dt}} = \beta X$$

where  $\beta$  is the first-order rate constant



## First-Order Rate Constants

- The first-order rate constant (β) is the algebraic sum of pharmacokinetic rate constants for one or more processes
  - β may be an excretion rate constant only or an elimination rate constant
    or a disposition rate constant
    As nothing is certain, β is normally referred to as the terminal rate constant

# Terminal Half-Life (t<sub>1/2</sub>)

#### Definition

"Time required for the concentration of drug in the systemic circulation to be halved in the terminal phase"

Mathematically:  $t_{\frac{1}{2}} = \ln(2)/\beta = 0.693/\beta$ 



## Model Independent Analyses

"The principal purpose of pharmacokinetic analysis is to gain information regarding

- (systemic) clearance, renal clearance
- volume of distribution
- metabolic disposition
- accumulation characteristics on multiple dosing
- absorption of a drug

Model independent methods are now

available to attain these ends"

Gibaldi and Perrier, Pharmacokinetics, 1982, p475

### **Basic Pharmacokinetics for Pharmaceutical Products**

# Graphical plots of data used in pharmacokinetics





# **Graphical Plots**

An example illustrating data from two tablets with uncomplicated characteristics is shown in two different ways

Tablets are designated as "test" and "reference" dosage forms

Dosage forms will be compared later for bioequivalence

### **Arithmetic Plot**



# Logarithmic Plot



### **Basic Pharmacokinetics for Pharmaceutical Products**

#### **Bioavailability**





### Definition

This is taken directly from:

**Guidance for Industry** 

#### "Conduct and Analysis of Bioavailability and Bioequivalence Studies -

#### Part A : Oral Dosage Formulations Used for Systemic Effects"

Section 9 (Glossary of Terms)

Published by Health Products and Food Branch Guidance Document 1992



# Bioavailability

#### Definition

#### "The rate and extent of absorption of a drug into the systemic circulation"



Despite what may be said about the importance of the rate of absorption, it is often considered (maybe unfortunately) to be a secondary characteristic to extent of absorption



Graphical examples of the measurement of rate of absorption will be shown later in the bioequivalence section



#### Definition

The maximum concentration ( $C_{max}$ ) and time when  $C_{max}$  occurs ( $t_{max}$ )

#### Mathematically

Linear pharmacokinetic equations (may be complex)



#### Technically

 $C_{max}$  and  $t_{max}$  are generally measured by direct observation of values as close to the maximum as possible

Measurement of  $C_{max}$  and  $t_{max}$  is always an estimate of true values How close the measured estimate is to the true values depends on: number of observed data points accuracy of observed data **Control by appropriate study design** 



# Measurement of Extent of Absorption

#### Definition

The area under the blood (or plasma, or serum) concentration against time curve is known as AUC<sub>I</sub>

#### **Mathematically**

AUC<sub>I</sub> is the integral of the concentration between time zero and infinity (for a single-dose of a drug product)



# Measurement of Extent of Absorption

#### Technically

# AUC<sub>I</sub> is calculated from observed data at available time points by

"Linear trapezoidal rule" calculated between available time points to the last quantifiable concentration (C<sub>T</sub>)

#### plus

calculated area ( $C_T/B$ ) from  $C_T$  to infinity, where B is the terminal rate constant constant



### **Basic Pharmacokinetics for Pharmaceutical Products**

#### **Bioequivalence**







These are taken directly from:

**Guidance for Industry** 

"Conduct and Analysis of Bioavailability and Bioequivalence Studies -

Part A : Oral Dosage Formulations Used for Systemic Effects"

Section 9 (Glossary of Terms)

Published by Health Products and Food Branch Guidance Document 1992



# Bioequivalence

#### **Definition**

# "A high degree of similarity in the bioavailabilities

#### of two pharmaceutical products

(of the same galenic form) from the same molar dose

that are unlikely to produce clinically relevant differences in therapeutic effects, or adverse effects, or both"



Bioequivalent Products

#### Definition

"Test and reference products containing an identical drug or drugs, after comparison in an appropriate bioavailability study, are found to meet the standards for rate and extent of absorption specified in the guidelines"



Discussions on Bioequivalence

- Discussions on bioequivalence can be complex (for example, statistically)
- Complexities are vital and welcomed
- Also important to remind individuals of basic concepts
  - Probably most drug products have uncomplicated characteristics



### Maximum Concentration (C<sub>max</sub>)





#### $C_{max}/C_{max} = 79/99 = 0.80$

#### C<sub>max</sub> ratio is 80%

#### This C<sub>max</sub> ratio complies with standards for bioequivalence



### Linear Trapezoidal Rule



### Ratio of AUC<sub>T</sub>

#### $AUC_T / AUC_T = 259/281 = 0.922$

#### $AUC_T$ ratio is 92.2%

#### This AUC<sub>T</sub> ratio complies with standards for bioequivalence



# Ratio of AUC

Standards for bioequivalence do not require the comparison of areas under the curve to infinity (AUC<sub>I</sub>) to calculate ratio of AUC<sub>I</sub>

AUC<sub>I</sub> may be calculated using the AUC to the last quantifiable concentration (AUC<sub>T</sub>) plus a calculation involving the last quantifiable concentration (C<sub>T</sub>) and terminal half-life  $(t_{1/2})$ 

# Determination of $t_{\frac{1}{2}}$

#### Terminal half-life (t<sub>1/2</sub>) may be determined from logarithmic plots of the data

Usually, at least three points on a linear line are required

# Terminal Half-Life (t<sub>1/2</sub>)



# Measurement of Extent of Absorption

#### Measurement of AUC<sub>1</sub> is always an estimate of true AUC<sub>1</sub>

# How close the measured estimate is to the true value depends on

number of observed data points accuracy of observed data

**Control by appropriate study design** 

# Study Subjects

Drug products "with uncomplicated characteristics can usually be tested in normal, healthy volunteers"

"The minimum number of subjects is 12, but a larger number is often required"

Part B, Section 6.3 (Number of Subjects), 2003



Assumptions of Bioequivalence

 Intensity of a pharmacologic response is somehow related to concentration of drug in blood

The alternative is to measure the clinical intensity of the response (known as pharmacodynamics)



Assumptions of Bioequivalence

Intensity of a pharmacologic response is not directly related to concentration in blood

#### Therefore

A doubling of intensity does not occur with a doubling of concentration



### Basic Pharmacokinetics for Pharmaceutical Products

#### Assumptions and challenges of bioavailability and bioequivalence measurements





# **Assumption One**

Intensity of pharmacologic
 response is roughly related to
 log of concentration in blood

(between 20-80% of maximum response)

#### Therefore

A rough doubling of intensity requires approximately a ten-fold increase in concentration

# **Assumption Two**

Concentration in blood is directly related to concentration at site of action (possibly at receptors)
 Therefore
 Bioavailability and bioequivalence

relate to therapeutic effect



# Challenges

While it will always be important to remind individuals of basic concepts of pharmacokinetics, the practical outcomes of discussions on "surrounding" issues should never be discounted



# Challenges

#### Some "surrounding" issues

- oral modified-release dosage forms (MRDF)
- drugs with narrow therapeutic range
- drugs exhibiting non-linear pharmacokinetics
- highly variable drugs and drug products
- requirements for studies with food effects
- drugs whose therapeutic effect is not mediated through systemic absorption
- correlation between absorption (*in vivo*) and dissolution (*in vitro*)



### Quotation

#### Crafty men condemn studies, simple men admire them, and wise men use them

Francis Bacon (1561-1626) English Philosopher, Politician, and Essayist



### **Basic Pharmacokinetics for Pharmaceutical Products**

#### Any questions?



