

Biologics vs TPD Toxicology Requirements "101"

Jon Daniels, PhD, DABT, ERT Intrinsik Health Sciences Inc.

October 16, 2012 Canadian Association of Professional Regulatory Affairs Toronto, Canada

Overview

- Introductory Comments
- Fundamental differences between small molecules and biologics
- Challenges specific to biologics
 - Species specificity
 - Immunogenicity
- Types and timing of nonclinical studies
- Selection of starting doses in clinical trials
- Summary

Introduction

- Objective of presentation:
 - To describe the principles and the underlying science behind the sometimes different approaches to the assessment of small molecules and biotechnologyderived therapeutics (rather than just listing the different requirements)
- Reminder guidelines are designed only to provide general direction for typical situations; they cannot be applied universally to all products and all circumstances

Pharmaceuticals

- Majority are small molecule (traditional) pharmaceuticals
 - Extensive experience and historical database
 - Industry
 - Regulators
 - Scientific and regulatory expectations for nonclinical toxicology programs to support clinical trials and marketing authorizations are well defined
 - ICH M3(R2)
 - ICH S9

Pharmaceuticals (Continued)

- Biotechnology-derived therapeutics (biologics)
 - Increased production over the last 25 years for use in various clinical indications
 - Relatively new (compared to small molecules)
 - Less experience
 - Industry
 - Regulatory agencies
 - Smaller historical database
 - Clinical and nonclinical

Biologics

- Definition protein pharmaceuticals derived from living organisms including:
 - Humans
 - Animals
 - Plants
 - Microorganisms
 - Biotechnology methods (recombinant DNA/cell culture technology)

Therapeutic Biologics

- Biologics include:
 - Vaccines
 - Cell and gene therapy products
 - Anti-toxins
 - Blood and blood derived products
 - Monoclonal antibodies
 - Fusion proteins

Therapeutic Biologics

Recombinant antibodies

Therapeutic Biologics (Continued)

- Biologics (using recombinant DNA technology)
 - Initially developed in the early 1980s
 - Revolutionized the treatment of human disease by:
 - Mimicking or supplementing a human endogenous protein (e.g., growth hormone, erythropoietin)
 - Activating (agonistic) or blocking (antagonistic) a signaling pathway through specific receptor or ligand binding (e.g., recombinant human insulin for diabetes, Interferon-α-2b for hairy cell leukemia)

Small Molecules vs Biologics

- Fundamental differences exist between small molecules and biologics
 - Differences influence the types of nonclinical toxicology studies to support safety assessment
 - Regulatory guidance documents support a different approach for the nonclinical toxicology studies (ICH S6(R1): Preclinical Safety Evaluation of Biotechnology-derived Pharmaceuticals)

- Small Molecules
 - Manufactured by chemical process
 - Low molecular weight
 - < 1000 daltons
 - Potential for extensive distribution within the body
 - Structure
 - Simple and well defined
 - Example: ibuprofen
 (Advil®), MW ~207 g/mol

- Biologics
 - Derived from genetic manipulation of living cells
 - High molecular weight
 - ≥ 1000 daltons
 - High molecular weight proteins are largely confined initially to the vascular space
 - More limited distribution within the body
 - Structure
 - Complex and defined by manufacturing process
 - Example: Monoclonal antibody (IgG), MW ~150,000 daltons

- Small Molecules
 - Generally administered orally
 - Metabolized
 - Liver
 - Metabolic pathways characterized
 - Biotransformation studies
 - Parent & metabolites identified
 - Potential for active or toxic metabolites

- Biologics
 - Generally administered parenterally (IV, SC, IM)
 - Catabolized by body (proteolytic degradation)
 - Amino acids
 - Small peptides
 - Active or toxic
 breakdown protein
 products generally not a
 concern
 - Biotransformation studies generally not performed

intrinsik

- Small Molecules
 - Food-effect may be a concern
 - Drug-drug interactions potential concern
 - Studies typically required
 - Half-life relatively short
 - Minutes
 - Hours

- Biologics
 - Generally no concern for food-effect
 - Drug-drug interactions are less of a concern
 - Half-life can be very long
 - Up to ~3 weeks (i.e., approaching that of endogenous IgG)

- Small Molecules
 - Impurities generally consist of:
 - Starting materials
 - Related compounds
 - Solvents
 - Toxicity studies for impurities may be necessary
 - Immunogenicity is rarely a concern

- Biologics
 - Impurities generally consist of host cell products:
 - DNA
 - Protein
 - Immunogenicity is often a challenge
 - Animals
 - Humans

- Small Molecules
 - Less target specificity (compared to biologics)
 - Toxicities often nonspecific/not related to the intended target
 - Off-target toxicity
 - Species limitations generally not a concern
 - 2 species usually used for toxicology studies (1 rodent; 1 nonrodent)

- Biologics
 - High target specificity
 - Toxicity often relate to the intended target (pharmacologic activity) of the drug
 - On-target toxicity
 - Exaggerated pharmacology
 - Species limitations may be a challenge
 - Only 1 relevant animal species may be available (or none)

Challenges Specific to Biologics: Species Specificity

- Most therapeutic biologics are:
 - Human proteins that are highly targeted to a human receptor
 - Antibodies specific for a human protein or receptor
- Due to high specificity to the human target, many biologics do not recognize the target in animal species commonly used in nonclinical toxicology studies
 - Mice
 - Rats
 - Dogs
 - Rabbits

- Toxicology studies for biologics should be conducted in a pharmacologically relevant animal species (ICH S6(R1))
- Relevant species one in which the biologic is pharmacologically active due to the expression of the intended target (e.g., receptor or epitope)
 - Potentially unable to use animal species commonly used in toxicology studies
 - Rodents, dogs (typical species for small molecule general toxicology studies)
 - Many biologics are highly specific for human targets
 - Nonhuman primate (NHP) may be the only pharmacologically relevant animal species
 - Problematic if the chimpanzee is the only animals where cross reactivity occurs

- ICH S6(R1) toxicology studies in non-relevant animal species (one that does not express the target) can be misleading and are discouraged
 - Unreliable safety data
 - Not predictive of potential human toxicity
- There are cases when only one relevant animal species can be identified
 - NHP (i.e., cynomolgus monkey)
 - May be acceptable with sufficient justification
 - Demonstrate other species were evaluated

- ICH S6(R1) necessary to demonstrate the animal species used in toxicology studies is/are pharmacologically relevant
- Species selection is an important early activity in the toxicology program
 - Often occurs in a similar timeframe as biological characterization of the lead molecule

- Demonstrating relevance and species selection:
 - Sequence homology between human and animal target
 - Expression and distribution of the target between human and animal species (e.g., mRNA, protein)
 - Binding affinity to human and animal target
 - Functional bioassay to demonstrate pharmacologic activity of the molecule in human and animal cells
 - In vitro
 - Ex vivo
 - Cell proliferation
 - In vivo biomarkers
 - Serum marker of pharmacologic activity
 - Up-/down-regulation receptor

Challenges Specific to Biologics: Immunogenicity

- Immunogenicity is a unique property of biologics
- Distinguishes this class from small molecules
- Being proteins, biologics can be immunogenic in both humans and in animals
- Biologics are often immunogenic in the animals used in the safety evaluation process

- Production of anti-drug antibodies (ADAs) in animals can affect the outcome of a toxicology study ranging from:
 - No effect
 - Alterations in the pharmacokinetic and/or pharmacodynamic profile
 - Life-threatening consequences
- Measuring ADA responses in toxicology studies may provide information to:
 - Aid in the interpretation of study results
 - Assist the design of subsequent studies

- ADA responses in animal studies are not relevant in predicting immunogenic response in humans
- Four types of ADAs and responses can occur nonclinically and clinically
 - Binding
 - Minimal to no impact (i.e., no toxicity and does not affect exposure/activity)
 - Clearing
 - Increase clearance and decrease systemic exposure of drug
 - Can alter distribution of drug to tissues (e.g., target organs not exposed)

- Sustaining
 - Rare
 - Decreases clearance thus results in prolonged half-life/exposure of the molecule
 - Potentially lead to toxicity (or increased toxicity)
- Neutralizing
 - Interfere with molecule binding to the target
 - Neutralizes the pharmacological activity/efficacy of the molecule

- Primary concern for development of clearing and/or neutralizing antibodies in toxicology studies:
 - Lower exposure of the target (if present) and target organs to the drug
 - Results in fewer treatment-related toxicities
- ADA responses in toxicology studies:
 - Affects the interpretation of the toxicology study
 - Generates misleading toxicity data
 - Data not predictive of the potential for human toxicity

Types and Timing of Nonclinical Studies

Study Type	Timing (Relative to Clinical Trials)	Small Molecule	Biologic
Pharmacodynamics	Prior to Phase 1	Yes	Yes (May provide critical safety data in a disease model)
In vitro metabolic profile and plasma protein binding	Prior to Phase 1	Yes	No
Systemic exposure (PK)	Prior to Phase 1	Yes	Yes
Comparative in vivo animal and human metabolism data	Generally prior to Phase 3	Yes	No

Types and Timing of Nonclinical Studies (Continued)

Study Type	Timing (Relative to Clinical Trials)	Small Molecule	Biologic
Safety Pharmacology -Cardiovascular -Respiratory -CNS	Prior to Phase 1	Yes (Stand-alone studies not required for anticancer products)	Product Specific
General Toxicology	Prior to Phase 1, 2, and 3 (see ICH M3(R2)	Yes 2 Species (1 rodent + 1 nonrodent)	Yes (1 species acceptable if justified; duration may be limited by ADAs)

Types and Timing of Nonclinical Studies (Continued)

Study Type	Timing (Relative	Small Molecule	Biologic
	to Clinical Trials)		
Genotoxicity		Yes	No
-In vitro bacterial	Prior to Phase 1	(See ICH S2(R1) for	(Rare
mutagenicity		new options)	exceptions)
-In vitro mammalian	Prior to Phase 1		
chromosomal			
aberrations			
-In vivo chromosomal			
aberrations	Prior to Phase 2		
	(unless there is a		
	"signal")		

Types and Timing of Nonclinical Studies (Continued)

Study Type	Timing (Relative to	Small Molecule	Biologic
	Clinical Trials)		
Reproductive and		Yes	Product Specific
Developmental Toxicity		(Typically)	
-Fertility	Prior to Phase 3		
-Embryofetal	Prior to Phase 3		
development			
(teratology)			
-Pre-/postnatal	Marketing		
development	authorization		
Carcinogenicity	Marketing	Yes	Product Specific
	authorization	(chronic use agents)	

Establishing a Safe Starting Clinical Dose

- United States (FDA 2005) guidance:
 - Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers
 - [http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryl nformation/Guidances/UCM078932.pdf]
- Europe (EMA 2007) guidance:
 - Guideline on Strategies to Identify and Mitigate Risks for First-in-Human Clinical Trials with Investigational Medicinal Products
 - [http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_g uideline/2009/09/WC500002988.pdf]
 - MABEL = <u>Minimal Anticipated Biological Effect Level</u>

FDA 2005

- Applies to small molecules and biologics
- Not limited to FIH trials in healthy volunteers
- Defines 2 basic approaches
 - Toxicology
 - Pharmacology
- Toxicology (NOAEL; No Observed Adverse Effect Level) approach
 - Used most frequently
 - Determine NOAEL from toxicology studies
 - Convert NOAEL to human equivalent dose (HED)
 - Normalizes dose (mg/kg) to body surface area (mg/m²)

FDA 2005 (Continued)

- Choose HED from most appropriate species
 - Expresses target (receptor/epitope)
 - Biologic binds to target
 - Binding elicits relevant effect(s)
- Apply a safety factor to obtain the maximum recommended starting dose (MRSD)
 - 10X is the standard default
 - Causes for concern may increase the safety factor applied
 - See next slide

FDA 2005 (Continued)

Causes for Concern

- Steep dose response curve
- Severe toxicities
- Unmonitorable toxicity
- Toxicities without premonitory signs
- Variable bioavailability
- Irreversible toxicity
- Unexplained mortality

- Large variability in doses/plasma levels eliciting effects
- Nonlinear pharmacokinetics
- Inadequate dose-response data
- Novel therapeutic targets
- Animal models with limited utility (differences relative to humans)

FDA 2005 (Continued)

- Pharmacology approach
 - Used less frequently
 - Utilizes pharmacologically active dose (PAD)
 - Convert PAD to pharmacologic HED
 - Compare directly to MRSD
 - Consider decreasing clinical starting dose if pharmacologic
 HED < MRSD

EMA 2007

- <u>Minimal Anticipated Biological Effect Level</u>
 - Anticipated dose level leading to a minimal biological effect in humans
- Applies to small molecules and biologics
- Factors of risk
 - Mode of action (e.g., novel, amplification)
 - Nature of target (e.g., understanding, function)
 - Relevance of animal model(s) (e.g., extent to which model reflects human)

EMA 2007 (Continued)

- NOAEL
 - Obtained from nonclinical safety studies
 - Adjusted using allometric factors or pharmacokinetics
- MABEL
 - Applied to address increased risk (as identified from risk factors)
 - Utilizes all available in vitro and in vivo information from pharmacokinetic/pharmacodynamic studies
 - Safety factor may be applied to MABEL
 - PK/PD modeling should be used wherever possible
 - Some companies are applying the MABEL concept on their own outside EU

Summary

- There are fundamental differences between small molecules and biologics
- Properties of biologics can influence the overall approach and the specific designs of the nonclinical toxicology studies
- Critical to conduct the most appropriate studies based on the properties of the therapeutic under evaluation
- Conducting inappropriate toxicology studies can set precedence or inappropriate expectations by the regulators

