Metabolism and Drug-Drug Interactions

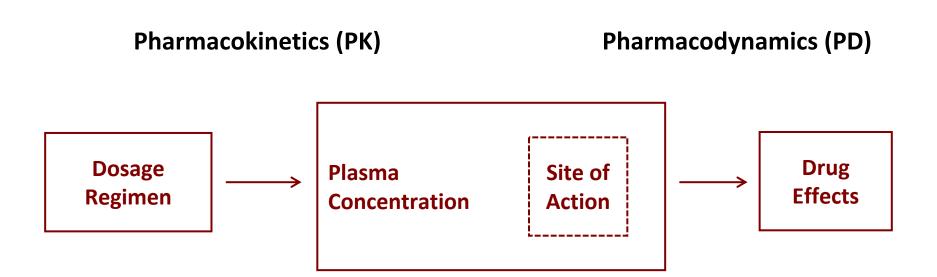
CAPRA Toxicology Symposium

Leanne L. Bedard, PhD Principal and Consultant

15 October, 2012

Outline

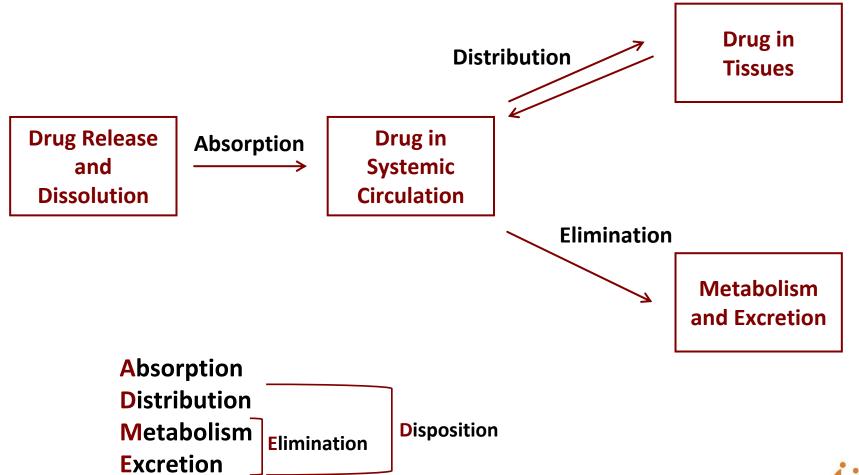
Basic Principles of Drug Metabolism, Pharmacokinetics and ADME


Role of ADME-PK in Drug Discovery and Development

Basis of Drug-Drug Interactions

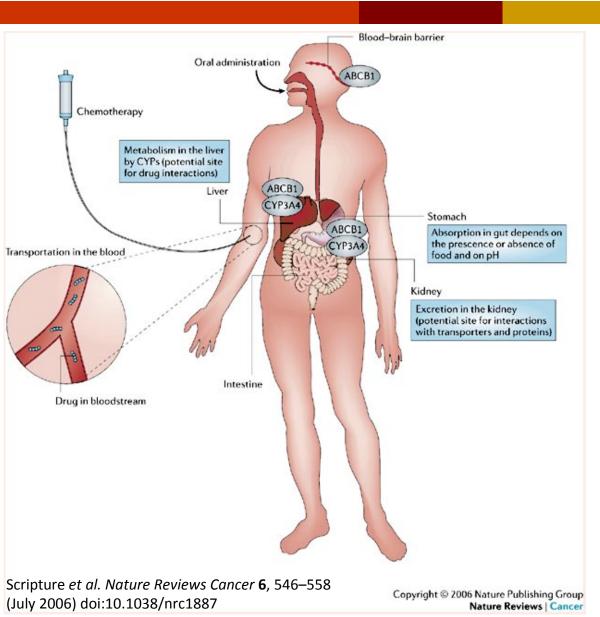
Draft FDA and EMA Guidance Documents for Drug-Drug Interactions (2012)

Pharmacokinetics and Pharmacodynamics



Pharmacokinetics: "What the body does to the drug"

Pharmacodynamics: "What the drug does to the body"

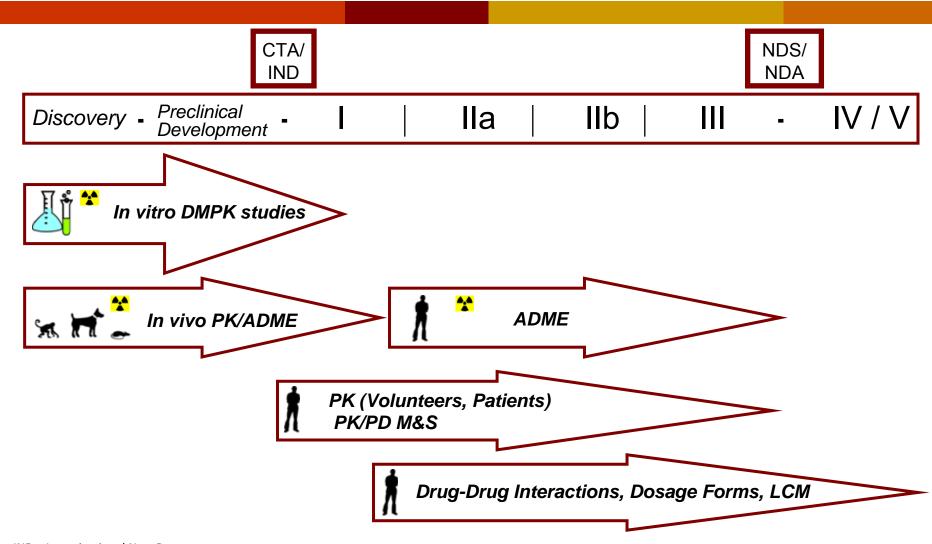


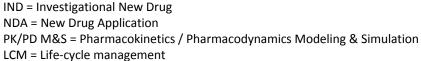
Pharmacokinetic Processes (ADME)

Sites of Drug Disposition

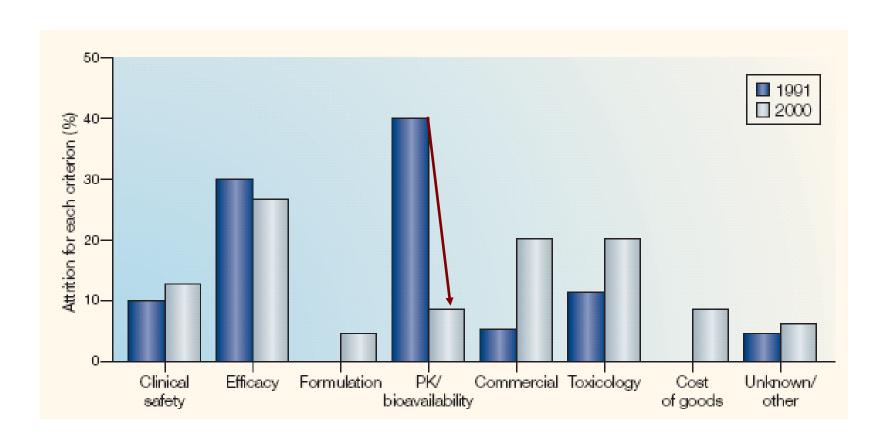
Factors which influence drug clearance:

- **1.Metabolism:** Cytochrome P450 (CYP) enzymes in liver and gut catalyze drug oxidation reactions and contribute to the metabolism of ~75% of marketed drugs.
- **2.Transport:** Hepatic uptake and biliary efflux transporters Renal uptake and efflux transporters
 - Pgp (ABCB1), BCRP, OATPs, OCTs, OATs, MATE




Role of DMPK in Drug Discovery and Development

- Understanding the ADME properties of drug candidates will ensure that:
 - The human PK of drug candidates will meet the target product profile
 - Understand exposure/efficacy relationship (PK/PD)
 - Appropriate PK properties to support desired dosing regimen and combination options
 - There is adequate exposure in safety studies
 - Good bioavailability and exposure in safety species (rat, dog, monkey)
 - Adequate coverage of human metabolites in safety species
 - The drug candidate is clinically safe and commercially competitive
 - Minimal potential for drug-drug interactions
 - Disposition not solely dependent on a polymorphically-expressed enzyme/transporter (e.g. CYP2D6, 2C19, OATP1B1)
 - Minimal potential to form reactive metabolites, which could lead to druginduced liver injury


DMPK in Drug Discovery and Development

Why Potential Drugs Fail...

Early assessment of ADME properties of lead compounds has greatly lowered drug failure due to poor ADME-PK properties

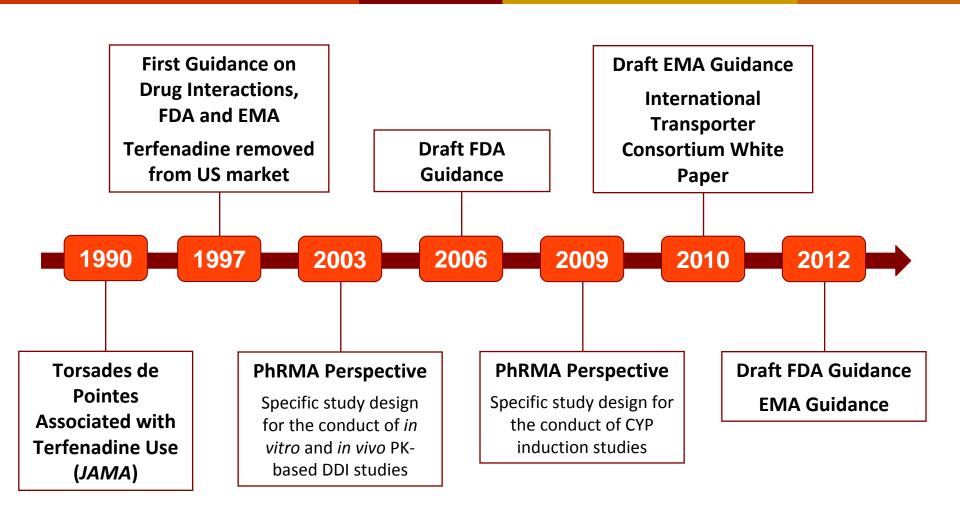
Undesirable DMPK Properties of Marketed Drugs

Drug	Undesirable DMPK Property	Potential Risk for Toxicity	Action
Mibefradil (<i>Posicor</i>)	Potent CYP3A4 inhibitor	Perpetrator of drug-drug interactions	Market withdrawal
Terfenadine (<i>Seldane</i>)	Extensively and exclusively metabolized by CYP3A4	Victim of drug-drug interactions • Risk of cardiovascular adverse effects upon co-administration with CYP3A4 substrate ([Terfenadine] _{plasma})	Market withdrawal
Celecoxib (<i>Celebrex</i>)	Metabolized almost exclusively by CYP2C9 (polymorphic)	Risk of cardiovascular adverse effects due to ↑ [Celecoxib] _{plasma} in CYP2C9 poor metabolizers	Black box warning on drug label
Troglitazone (<i>Rezulin</i>)	Metabolism to reactive intermediate	Hepatotoxicity	Market withdrawal

DMPK Criteria for an "Ideal" Drug

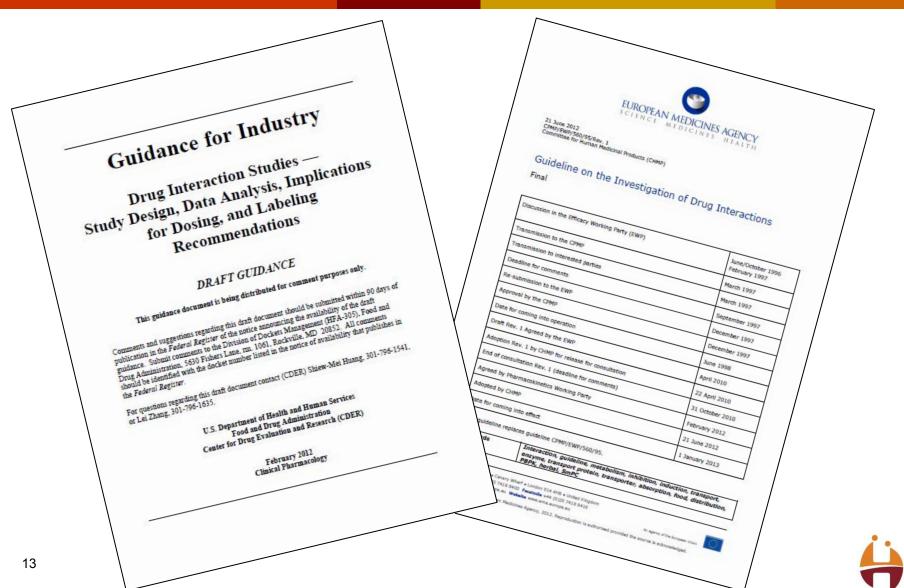
- Good aqueous solubility (oral absorption / intravenous formulation) and good permeability (lipophilicity)
- Acceptable PK for intended route / frequency of dosing
 - Low clearance
 - Low "first-pass effect" (liver/gut wall), high (oral) bioavailability
- No pharmacologically active metabolites (unless prodrug)
- No human specific metabolites
- Not bioactivated to reactive metabolites
- "Balanced" clearance
 - Renal excretion of intact drug
 - Biliary elimination of intact drug
 - Metabolism to limited number of products and by multiple enzymes
 - Metabolism should not depend largely on polymorphic enzymes
- Minimal CYP induction
- Low propensity to inhibit drug-metabolizing enzymes/transporters

Drug-Drug Interactions



Drug-Drug Interactions (DDI)

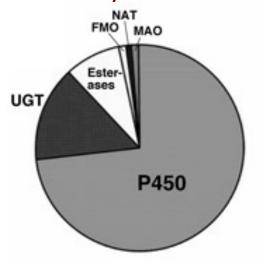
- DDI are one of the primary concerns for co-administered drugs
 - Can lead to decreased efficacy or increase adverse events
- Two categories of DDI: PD-based and PK-based
- Types of PK-based DDI:
 - Absorption-driven
 - Excretion-driven: Biliary and renal drug transporters
 - Plasma protein binding (risk is low; may be important for highly bound drugs with narrow therapeutic window)
 - Metabolism-driven:
 - Effect of an investigational drug on other drugs *Perpetrator*
 - Effect of other drugs on an investigational drug Victim
 - Many mechanisms: CYP inhibition (reversible or irreversible), CYP induction



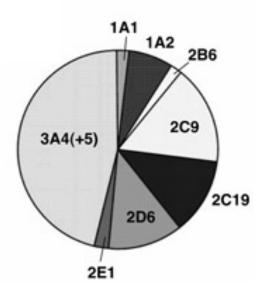
Evolution of Guidance for Industry on DDI

New DDI Guidance Documents 2012

New DDI Guidance Documents 2012


- Significant advances have been made in our understanding of the mechanisms underlying clinically relevant DDIs since the introduction of the first guidance document in 1997:
 - More CYP isoforms for CYP inhibition and induction
 - Inclusion of UGT-mediated DDI
 - Data-driven consideration of less common drug-metabolizing enzymes
 - Transporter-mediated DDI (substrate and inhibition)
 - DDI mediated by metabolites
 - Additional guidance for in vitro assay data interpretation (basic and mechanistic models) and decision trees to trigger in vivo evaluation
 - Role of dynamic PBPK modeling and simulation

Focus on general strategies and study design for in vitro studies



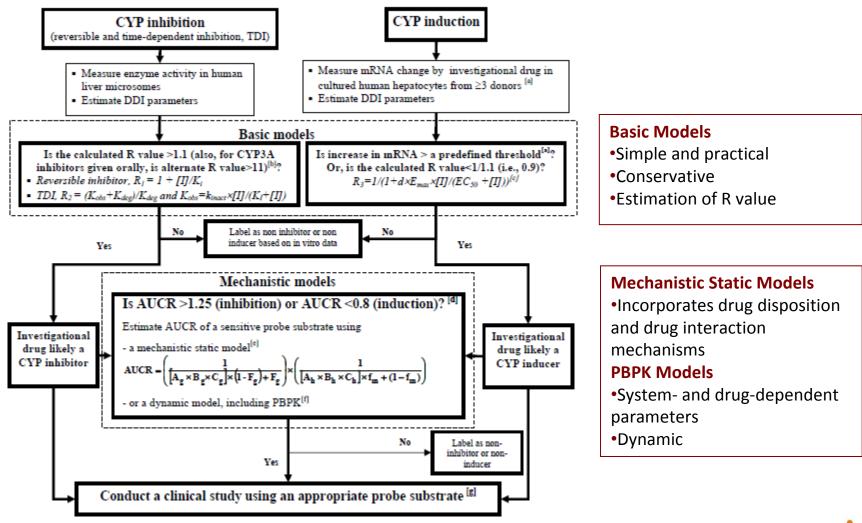
Drug-Metabolizing Enzymes

Fraction of drug reactions catalyzed by various human enzymes:

Fraction of P450-mediated drug oxidations catalyzed by individual P450s:

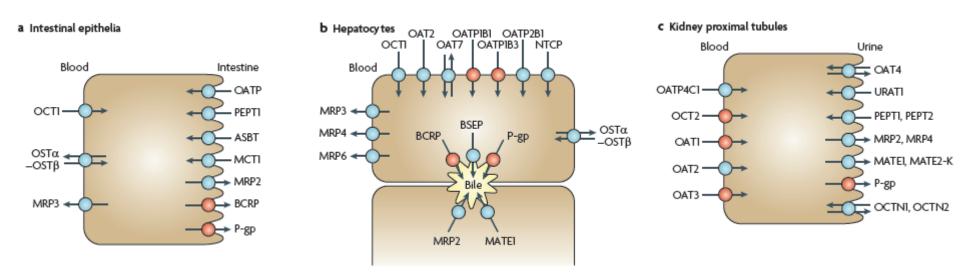
FDA Draft Guidance:

- •CYPs for phenotyping and inhibition studies: 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4
- •UGTs for phenotyping: 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B15


 UGT2B10 missing (high affinity N-glucuronidation)
- Consider less common enzymes for phenotyping (FMO, MAO, AO, ADH, XO, SULT)

EMA Guidance:

- •CYP inhibition: 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4
- CYP and non-CYP enzymes for phenotyping
- •Consider UGT1A1 and UGT2B7 inhibition for compounds eliminated by glucuronidation



CYP Inhibition and Induction: FDA Decision Tree

Drug Transporters

Transporter Study	Draft FDA Guidance	EMA Guidance	
Substrate ID	Pgp, BCRP, OATP1B1, OATP1B3, OAT1, OAT3, OCT2	OATPs and any relevant intestinal, biliary, renal transporter	
Inhibition	Pgp, BCRP, OATP1B1, OATP1B3, OAT1, OAT3, OCT2	Pgp, BCRP, OATP1B1, OATP1B3, OAT1, OAT3, OCT2 Also consider OCT1, MATE1, MATE2, BSEP	

Clinically Relevant Transporter-Mediated DDI

Transporter	Tissue/ Function	Interacting Drug	Affected Drug	Clinical Impact
Pgn	Intestine, kidney,	Quinidine	Digoxin	CL _r ↓34-48%
	liver/Efflux	Drondarone	Digoxin	AUC↑157%, C _{max} ↑75%
BCRP	Intestine, kidney, liver/Efflux	GF120918	Topotecan	AUC↑143%
OATP1B1	Liver/Uptake	Cyclosporine	Pravastatin	AUC↑890%, C _{max} ↑678%
OATP1B3	Liver/Uptake	Cyclosporine	Rosuvastatin	AUC↑610%
OAT1	Kidney/Uptake	Probenecid	Acyclovir	AUC↑40%, CL _r ↓32%
OAT1/OAT3*	Kidney/Uptake	Probenecid	Furosemide	CL _r ↓66%
OCT2/MATE*	Kidney/Uptake/ Efflux	Cimetidine	Metformin	AUC↑50%, CL _r ↓27%

^{*}It is not possible to definitively assign specific transporters to these interactions.

The International Transporter Consortium (2010) Nat Rev Drug Disc 9: 215-236.

Other Topics Covered in Guidance Documents

Draft FDA Guidance	EMA Guidance	
Drug Interactions of Therapeutic Proteins		
Design of <i>In vivo</i> DDI Studies	Design of <i>In vivo</i> DDI Studies	
Strategy for PBPK modeling and simulation and population PK	Strategy for PBPK modeling and simulation and population PK	
	Herbal medicinal products and food effects	
	Plasma protein binding interactions	
	Guidelines for <i>in vivo</i> mass balance studies	
Labeling Recommendations	Labeling Recommendations	

Conclusions

- Significant advances have been since the introduction of the first DDI guidance document in 1997
- Today, clinically-relevant PK-based DDIs can be predicted from a limited number of well designed mechanistic in vitro studies using human enzymes and transporters
 - Due to marked species differences, in vivo studies in preclinical species cannot be extrapolated to humans
 - CYP-mediated metabolic interactions are relatively well understood
 - In vitro-in vivo extrapolation for drug transporter-mediated interactions is expected to continue to evolve
- Evaluation of the potential for DDI should be done early in discovery

